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Abstract Most welding processes present large sets of
correlated quality characteristics. With this particularity in
mind, we present a multi-objective optimization technique
based on Principal Component Analysis (PCA) and
response surface methodology (RSM). This two-fold
technique utilizes PCA to factorize the original welding
responses. The original responses—obtained through a
Central Composite Design—are then replaced by the
resulting principal component scores. The technique’s
advantage is that it reduces the data set and still considers
the correlation among the responses. Quite often, however,
the first principal component alone cannot explain the
amount of variance–covariance structure of the welding
responses. In this paper, we remedy this shortfall by
proposing an objective function established in terms of
the most significative principal component scores (weight-
ed by their respective eigenvalues). Experimental results
were obtained with a multiresponse pulsed gas metal arc
welding process. These results, when compared with other
strategies of multiresponse combination, verify the adequa-
cy of our proposed approach.

Keywords Multi-objective optimization . Response surface
methodology (RSM) . Principal Component Analysis
(PCA) . Pulsed gas metal arc welding (P-GMAW)

Abbreviations and symbols
CCD Central composite design
WMI Weighted multivariate index
A Weld bead area
H Weld bead height
W Weld bead width
R Weld bead reinforcement
ξ CCD design radius or axial distance
Σ Covariance matrix of response random vector YT ¼

Y1; Y2; . . . ; Yp
� �

P Weld bead penetration
p Number of responses in a multivariate design
Yp p-th response of a multivariate data set
β Model coefficient
PCi i-th principal component
eTi Eigenvectors related to the i-th eigenvalue
Z Standardized response data matrix
E Matrix of the eigenvectors for the multivariate data set
l p p-th eigenvalue of a data set
Λj j-th Lagrange multiplier
R Correlation matrix
n sample size or number of experiments in a

respective design
χ2 Chi-square distribution
α Significance level
rij Pearson’s correlation coefficient between response

variables i and j
r Mean of the rij Pearson’s correlation coefficients
μ Gamma function
rw Mean of each line formed with the off-diagonal

elements of R
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ω Rank of the correlation matrix R
IK Kulbach index
ID Divergence index
IR Redundancy index
K Number of experimental factors duty cycle
PCp p-th significant principal component
x Vector of the experimental parameters; xT ¼

x1; x2; . . . ; xk½ �
φ Convexity index; φ=H/W
Ω Experimental region
δ Small perturbations
x Optimum of the perturbed problem
x* Local optimum
df Degree of freedom
Ip Peak welding current
Ib Background welding current
f Wire feed rate
φ Convexity index (H/W)

1 Introduction

Optimization techniques are very powerful tools used in
manufacturing and service industries. Researchers have
directed their attention to the case when there is only one
goal to optimize. However, in the real world, products and
services have several characteristics, often conflictive
among themselves, and choosing parameters that provide
global optimization for more than one characteristic of
interest is not an easy task. Also, when responses are
correlated, the individual analysis of each output is an
unsatisfactory alternative. In fact, if one ignores the
correlations between the outputs, one achieves an unreliable
setting that improves the quality of all the responses
simultaneously [1, 2]. Practitioners wanting to obtain an
approximately true relationship between input and output
variables, generally employ Design of Experiments (DOE)
and regression techniques. These techniques, however, can
be greatly influenced by the correlations, causing model
instability, over fitting, and errors of prediction [3].

The welding optimization literature frequently reveals
correlation among responses. It happens mainly when the
weld bead geometry and shape are considered in the same
analysis. Murugan and Gunaraj [4], for example, studied
five responses of a submerged arc welding (SAW) process,
considering penetration (P), reinforcement (R), and width
(W). They also calculated shape relationships considering
the penetration size factor (W/P) and the reinforcement
form factor (W/R). When they then considered, at the same
time, the geometric characteristics and their relationships
with W/P and W/R, the response data set revealed a strong
correlation structure.

Many other examples from welding literature illustrate
this tendency. Kannan and Murugan [5] studied a flux-
cored arc welding with eight responses. All of them
presented significative correlations among each pair of
response variables. Pearson’s correlation coefficient equal
to 0.88 was seen to be established between penetration (P)
and dilution (D), and 0.81 was observed between
reinforcement (R) and bead width (W). Along the same
lines, strong and significative correlation is seen in
processes like SAW [6], resistance spot welding [7], and
laser welding [8]. Such correlation in these welding
processes can also be observed in many applications of
DOE with correlated responses. Yet, their influence over
the estimated parameters of the response models is
generally negligible.

We can handle multiresponse optimization of weld-
ing problems in two ways. We can gather the weighted
sum of all the outputs into a single objective function
[9, 10] or we can optimize one of the targets and enforce
the constraints on the other targets [11]. If we focus on the
first approach, we find that most researchers employ
overall indices that convert the multiple quality character-
istics into a single function. This function, in turn, must
be optimized [12, 13]. Most choose to ignore the
influence of the correlation structure that exists in the
original data set. Such choice may result in non-
conclusive results.

Several researchers, in addressing the correlation
influence in multiresponse optimization, have used a
Principal Component Analysis (PCA)-based approach
[14, 15, 30, 31]. Let us suppose we are optimizing a
manufacturing process with correlated responses. For an
objective function, we would generally use the uncorre-
lated linear combination represented by the principal
component scores of the original responses [14]. We
would collect the multiresponse data sets to be factorized
in PCA using a DOE technique like Taguchi arrays [14–
18] or RSM [19]. While effective, the trade-off with this
approach is that the first principal component score is not
always enough to explain most of the variance–covariance
structure.

This paper, in response to these concerns, proposes
an optimizing strategy for correlated multiresponse
processes. It is a strategy that aggregates all the
significative principal component scores weighted by
their respective eigenvalues. We call such an objective
function the weighted multivariate index (WMI). It is a
good counter-measure to a weakly performing first
principal component that poorly represents the original
data set [18–20].

In the following sections, this paper details the weighted
multivariate optimization method.
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2 The weighted multivariate response surface approach

A statistical technique, PCA summarizes, in a few
uncorrelated components, common patterns of variation
among response variables. It uses the factorization of a
variance–covariance (Σ) or correlation (R) matrix associat-
ed with the random vector YT ¼ Y1; Y2; . . . ; Yp

� �
, to

produce pairs of eigenvalues (λi) eigenvectors (ei) and an
uncorrelated linear combination PCi ¼ eTi Y , with i=1, 2, ...,
p. The original data set may be then replaced by the
uncorrelated linear combinations in the form of principal
component score (PCscore). If Z is the standardized data
matrix and E is the eigenvectors matrix of the multivariate
set, then the PCscore can be written as [24]:

PCscore ¼ Z½ � � E½ � ð1Þ
To verify a sufficient number of principal component

scores which may replace the original responses, there is a
variety of stopping rules. Most popular is Kaiser’s criteria
by which the researcher keeps only the principal compo-
nents whose eigenvalues are greater than one [24]. At the
same time the researcher considers an explained cumulative
variance greater than 80%. It is also possible to employ χ2

test [25–27] defined in Eq. 2, with p p� 1ð Þ=2 degrees of
freedom, to verify if the higher eigenvalues are significant.
The null hypothesis is that all variables are uncorrelated.

#2 ¼ � n� 1

6
2pþ 11ð Þ

� �
‘n Rj j ð2Þ

To test if the eigenvalue of the second principal
component is different from the remaining ones [28], we
may employ Eq. 3, approximately distributed as a χ2, with
pþ 1ð Þ p� 2ð Þ=2 degrees of freedom. By rejecting the null
hypothesis, we assume that the second eigenvalue is also
significative and must be kept to compose the multivariate
index.

#2 ¼ n� 1
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For both cases (Eqs. 2 and 3), the null hypothesis is
rejected when p<0.05.

The dependence structure may also be assessed using
Kulbach index (IK), divergence index (ID), and redundancy
index (IR) [29], all of them based on the correlation matrix
R. Such statistics can be written as:

IK ¼ � 1

2
‘n Rj j ¼ � 1

2

Xp
i¼1

‘n lið Þ ð5Þ

ID ¼ 1

2
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� � ¼Xp
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� �
ð6Þ

IR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk k2 � p

p p� 1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼kþ1

Pp
j¼1

r2jK

 !
� p

p p� 1ð Þ

vuuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
lm

	 

� p

p p� 1ð Þ

vuuut ð7Þ

Considering the eigenvalues of the correlation matrix as

a set of weights, we can write the WMI as
Pr
p¼1

lp PCp

� �� �
.

Applying the ordinary least squares (OLS) algorithm for
WMI, we obtain a second-order polynomial such as Eq. 8.

Y ¼ b0 þ
XK
i¼1

bixi þ
XK
i¼1

biix
2
i þ

XXK
i<j

biixixj þ " ð8Þ

and the multivariate optimization system may be estab-
lished as:

Maximize WMI ¼
Xr
p¼1

lp PCp

� �� � ð9Þ

Subject to : xTx � x2 ð10Þ
The assumption of maximization described in Eq. 9 is

established supposing that the desired optimization direc-
tion for each original response is positively correlated with
the multivariate index. These may be defined by analyzing
the correlation between a WMI and each original response.
For positive correlation between WMI and an original
response, both functions will have the same direction of
optimization. If the correlation between WMI and a
response is negative, the maximization of WMI implies
the minimization of the response and vice versa. Inspection
of the eigenvectors will reveal the kind of relationship that
exists between the i-th principal component score and the
original responses.
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A potential difficulty in optimizing a multivariate
response generally occurs due to conflicting minima and
maxima in a group of variables that, for instance, must be
simultaneously maximized. In this case, optimizing the
principal component equation will benefit some responses
but impede others [19]. To avoid this aspect of the
multivariate approach, a particular solution can be proposed
using the following two-step strategy:

1. Start the solution using a one-dimensional optimization
of each response separately.

2. The optimum achieved in Step 1 for all the responses
will be considered as targets for a multivariate nominal-
the-best problem. This approach is discussed in Paiva et
al. [31].

Although this strategy seems to be adequate, we will not
employ it here since the responses do not present any
conflict with the principal component optimization in this
specific case.

To solve the Nonlinear Programming (NLP) problem of
Eqs. 9 and 10, the practitioner can use any optimization
algorithm. We adopt in this work, the generalized reduced
gradient (GRG), one of the most robust and most efficient
methods for constrained NLP optimization [23, 32].

3 Experimental procedure and data analysis

To accomplish the aims of this paper, we chose a pulsed
gas metal arc welding (P-GMAW) [34] process. It is a
case study that illustrating our method’s applicability
presents a particular correlation structure among the quality
characteristics. To optimize the output variables that affect
the P-GMAW weld quality characteristics, we adopt the
multivariate response surface approach. We obtained these
characteristics according to a fully rotatable central com-
posite design (CCD; Table 2) for four welding parameters
(Table 1), with seven center points. These center points’
runs provide an internal estimate of error (pure error) and
contribute toward the estimation of quadratic terms [21,
41]. In other words, when we use CCD, we obtain the
significance of the terms by using the mean square error)
from center point’s replications (the ANOVA within

variation). This process allows us to calculate the ANOVA
critical t, F, and p values. In this case, it was not necessary
to replicate the entire design.

The P-GMAW process presents many particularities.
These mainly relate to avoiding the drawbacks of
globular mode. At the same time, the process achieves
the benefits of spray transfer used in the traditional gas
metal arc welding (GMAW) process. The P-GMAW is
characterized by a pulsing of current between a low-level
background current and high-level peak current. The
current pulses in such a way that an average current is
always below the threshold level of spray transfer. The
background current is used to maintain arc when peak
currents are long enough to make sure there is detach-
ment of the molten droplets [34].

In the traditional GMAW process, globular metal transfer
mode occurs when the system is operating in low welding
current. As the current increases, the globular mode changes
to spray mode. The modular mode is characterized by the
periodic formation of big droplets at the outermost of the
electrodes. These droplets, due to gravitational force, detach
into the weld pool. The formation of big droplets causes the
process to suffer from arc instability and a lack of control over
the molten droplets. While the spray mode offers a high
deposition rate, for some material, its minimum current is too
high. Further drawbacks include its large heat input and the
wide bead [34].

To establish a highly reliable P-GMAW process, we
must to find out the important parameters and levels that are
connected to the P, W, and A. These must be maximized,
while H and φ must be minimized. The necessary
information to build a second-order model was obtained
and is included in Table 2. The convexity index φ was
determined using the expression φ=H/W.

To run the experimental design, we used an electric
power source running on a pulsed-mode current of
imposition. Such a source normally allows more flexibility
to adjust for the parameters. Connected to the equipment
was a mechanical tractor used to move the attached torch at
the adjustable welding speed. All welding tests were
performed using a weld-bead–on-plate technique. An
AWS ER 70S-6 wire with a diameter of 1.2 mm was used.
Its base material type was ABNT 1045 with 120×40×

Parameters Symbol Units Levels

−2 −1 0 1 2

Peak current Ip Ampere 245 280 315 350 385

Background current Ib Ampere 55 70 85 100 115

Duty cycle k % 35 40 45 50 55

Wire feed rate f m/min. 4.5 5 5.5 6 6.5

Table 1 Process parameters
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6 mm. The shielding gas was a mixture of Argon and 25%
CO2 with a constant flow of 15 l/min. The welding speed
was kept constant at 40 cm/min, and for all the tests the
standoff was 22.5 mm. The welding parameters and levels
are described in Table 1 and the experimental design in
Table 2. According to Ghosh et al. [35], the duty cycle (k)
was obtained using Eq. 13, where tp is the peak time, fixed
at 4 ms, and tb the background time, varying according to
the desired level.

k ¼ tp
tp þ tb

ð13Þ

After welding, all test specimens were cross-sectioned,
polished, chemically attacked, and then the geometric charac-

teristics of P, H, W, and A were determined. The convexity
index φ was determined using the expression φ=H/W.

The first two principal components also shown in Table 2
were obtained by applying Eq. 1 to the original welding
characteristics. Hence, while the principal component
scores PC1 and PC2 were determined, the OLS algorithm
was applied to create the multivariate objective functions.
These functions depend on the PCA eigenanalysis and the
multivariate indices. By observing the results shown in
Table 3, we may conclude that the multivariate approach is
an adequate option for the welding data. Table 3 shows the
results of Bartlett’s and Lawley’s tests, according to Eqs. 2,
3, and 4. As the test statistics are greater than the critical
values (p<5%), we reject the null hypothesis; this implies
that the first two principal components are significative.

Table 2 Welding parameters and responses for the CCD design

Parameters Responses Principal components

N Ip Ib k f P, mm H, mm W, mm f A, mm2 PC1 PC2 WMI

1 280 70 40 5 1.60 2.87 7.70 37.20 20.70 −1.031 1.677 −0.9088
2 350 70 40 5 1.60 2.90 6.60 44.40 19.00 −2.627 1.085 −6.4294
3 280 100 40 5 1.70 2.80 7.00 39.60 20.70 −1.556 1.703 −2.4407
4 350 100 40 5 1.87 3.10 6.30 43.00 18.70 −2.339 0.366 −6.4996
5 280 70 50 5 1.90 3.00 7.30 41.60 23.20 −0.927 0.491 −2.1302
6 350 70 50 5 1.66 3.70 6.00 52.50 20.90 −3.366 −2.941 −13.8241
7 280 100 50 5 1.96 2.90 8.10 35.50 21.50 −0.021 1.564 1.9560

8 350 100 50 5 1.90 3.30 7.90 38.00 22.80 −0.2543 −0.333 −1.1872
9 280 70 40 6 1.20 3.48 7.30 46.00 20.70 −2.619 −1.369 −9.5707
10 350 70 40 6 1.90 3.10 8.10 38.90 24.90 0.064 0.194 0.4430

11 280 100 40 6 1.22 3.50 7.20 48.30 23.00 −2.547 −1.859 −9.9904
12 350 100 40 6 1.95 3.10 8.60 35.90 27.00 1.019 0.252 3.3631

13 280 70 50 6 2.10 3.20 8.10 39.20 25.70 0.427 −0.342 0.8307

14 350 70 50 6 2.08 3.20 8.70 36.40 25.10 0.949 −0.025 2.7951

15 280 100 50 6 1.96 3.00 8.40 36.40 25.50 0.646 0.735 2.8727

16 350 100 50 6 2.30 3.20 9.20 28.50 28.40 2.772 0.276 8.6149

17 245 85 45 5.5 1.85 3.00 8.80 40.00 29.00 0.889 0.158 2.8555

18 385 85 45 5.5 2.29 3.12 8.10 38.10 27.00 0.967 −0.101 2.7525

19 315 55 45 5.5 1.79 2.91 8.50 34.50 21.70 0.117 1.643 2.4672

20 315 115 45 5.5 2.20 3.00 9.30 29.10 26.00 2.288 1.269 8.4578

21 315 85 35 5.5 1.42 3.00 7.60 39.50 22.30 −1.323 0.862 −2.8297
22 315 85 55 5.5 2.10 3.40 9.20 32.70 28.30 2.098 −0.797 5,2226

23 315 85 45 4.5 1.80 2.80 6.00 46.40 17.40 −3.144 1.397 −7.5685
24 315 85 45 6.5 2.02 3.20 8.10 39.50 26.80 0.444 −0.453 0.7391

25 315 85 45 5.5 2.60 3.25 8.80 36.20 30.70 2.526 −0.84 6.4451

26 315 85 45 5.5 2.10 3.30 8.10 40.70 27.60 0.557 −1.036 0.3245

27 315 85 45 5.5 2.20 3.30 8.70 38.10 28.90 1.491 −0.94 3.2292

28 315 85 45 5.5 2.50 3.10 8.00 38.80 26.90 1.109 −0.118 3.1535

29 315 85 45 5.5 2.32 3.35 7.80 42.00 28.00 0.608 −1.437 −0.0406
30 315 85 45 5.5 2.40 3.30 8.30 39.80 30.10 1.525 −1.253 2.9270

31 315 85 45 5.5 2.40 3.10 8.40 36.90 25.90 1.258 0.17 3.9704
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The indices IK, ID, and IR, established according to Eqs. 5, 6,
and 7, also reveal a high correlation among the welding
characteristics. This result means that the variance–covari-
ance structure really supports a multivariate approach. Table 4
shows that, taken together, the two principal components
represent 85.5% of the variation in the responses. PC1 is
capable of explaining only 59.6% of the total variation. This
is considered a poor explanation. In addition, we can see that
the first and the second eigenvalues are greater than one.
Based on these statistical tests and indices, we might
postulate that, to form the WMI, only the first two PC’s
must be chosen. The WMI values reported in Table 2,
obtained according to Eq. 9, becomes WMI ¼ l1 PC1ð Þ þ
l2 PC2ð Þ considering the first and second eigenvalues equals
to 2.98 and 1.29, according to Table 4. Then the multivariate
objective function can be written as:

WMI ¼ 2:845þ 0:267Ip þ 1:556Ib þ 1:995k þ 1:968f

� 0:597I2p þ 0:066I2b
�0:998k2 � 2:146f 2 þ 1:067IpIb � 1:305Ipkþ3:459Ipf

þ1:477Ibk � 0:297Ibf þ 1:857kf

ð14Þ
Figure 1 represents the multivariate objective function

obtained with WMI criteria as a function of the variables Ip
and k. Notice, in terms of the process parameters, the
nonlinear behavior of WMI; the function is concave, and
the stationary point is a maximum. The optimization

direction of WMI can be defined observing the correlation
among the principal components and the original data set,
represented by the eigenvectors in Table 4. The relationship
between eigenvectors and Pearson’s correlation coefficients
is straightforward [24]. Some findings from this relation-
ship are: (1) a high positive correlation between PC1 and
the responses P, W, and A; (2) a high negative correlation
between PC1 and φ, and (3) a high negative correlation
between PC2 and H. To improve the present welding
process, as cited above, the responses P, W, and A must be
maximized while H and φ must be minimized. From
analysis of the correlation between the principal compo-
nents and the responses, we can conclude that by
maximizing PC1, the responses P, W, and A will be
maximized while φ will be minimized; by maximizing
PC2, H will be minimized. PC1 is not enough to explain
most of the variance–covariance structure among the five
original responses. We can employ, to obtain a proper
solution, the maximization of WMI, which keeps the same
kind of correlation with the original data set and PC1. Since
WMI is concave, the stationary point is a maximum and the
optimization of all desired responses can be achieved
(Fig. 1). Using the GRG method to solve the optimization
problem, the spherical constraints will be imposed on the

Table 3 Tests and indexes for determination of non-trivial axes in the
PCA analysis

Test type Critical value Test value df p values

Bartlett 18.307 134.210 10 0.000

Lawley 16.920 93.156 9 0.000

Indexes IK ID IR
2.440 25.756 0.007 -10

-5

250

Ip
400

300
350

WMI
0

5

56
48

k40

Fig. 1 WMI surface plot as a function of Ip and k

Principal components

PC1 PC2 PC3 PC4 PC5

Eigenvalues 2.9775 1.2957 0.5165 0.1856 0.0246

Proportion 0.5960 0.2590 0.1030 0.0370 0.0050

Accumulated 0.5960 0.8550 0.9580 0.9950 1.0000

Responses Eigenvectors

P 0.4680 −0.0730 0.7900 −0.3190 −0.2250
H 0.0140 −0.8440 −0.2630 −0.4650 0.0400

W 0.5420 0.0450 −0.4590 0.1340 −0.6900
f −0.4800 −0.4040 0.3060 0.5030 −0.5090
A 0.5070 −0.3410 0.0590 0.6400 0.4610

Table 4 Principal component
analysis of the original P-
GMAW responses
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factor’s levels, forcing the values that optimize the responses
to fall into the experimental interval �x � xi � þx. For a
CCD design with four factors, ξ=2 [21].

As can be observed in Table 2, the CCD was used to
obtain the original set of responses (P, H, W, A, and φ).
These responses were factorized using PCA, and the first
and second principal component scores were stored. Using
the first and second eigenvalues as weights, the principal
components were aggregated into WMI. Tables 5 and 6
present the second-order model and the ANOVA, respec-
tively, obtained for the processed response WMI.

To assess the significance of each coefficient of the
model, a two-sided t test is used. For the purposes of the
analysis, the null hypothesis is stated as equality between
the response mean obtained in the levels +1 or −1 of each
parameter, such as H0 : m �1ð Þ ¼ m þ1ð Þ. Therefore, rejecting
the null hypothesis means that the factor is significative. If
the p value is less than the significance level, the null
hypothesis must be rejected. Table 7 presents the significa-
tive parameters for all responses focused on in this work.
Additionally, Table 5 also presents the significance of the
entire model. Since p<5%, the full quadratic model is
significative. The linear, square, and interaction terms of the
full quadratic model are also individually assessed. The null
hypothesis in this case is that the coefficient of a specific
parameter is equal to zero, such as H0: βi=0 against the
alternative hypothesis H0: βi≠0. In this case, all the p
values are less than 5%, indicating that at least one of linear
effects (and parameters) is significative.

When refining the model, a common approach is to
remove any nonsignificative terms, since the hierarchy
principle is not being violated, from the full model. This
hierarchical model–building principle [21] promotes an

internal consistency in the model and suggests that when a
particular polynomial term is included in a model, all
lower-order polynomial terms should also be included, even
those terms that do not exhibit significance individually.

For this experimental study, the nonlinear response surface is
adequate, indicated by the low p values for the regression
terms and a p value of 0.227 for the lack-of-fit (Table 6).
Moreover, since higher-order terms, like interaction, are
significant, the lower ones must be part of the model. For
example, if the interaction Ipf is significant, then the peak
current (Ip) must be kept in the model, despite (Ip) not being
important to the WMI explanation. Table 7 shows the second-
order model for PC1, WMI, and also for each welding bead
characteristic. In spite of some nonsignificant terms being
detected, its exclusion from the complete model has increased
the error S and reduced the R2adj. Figure 2 presents the
accuracy of the predicted WMI and the measured WMI.

Considering the full quadratic model of WMI as a
multivariate objective function described by Eq. 9 and
applying the spherical constraint from Eq. 10, the optimal
settings for the design factors of the P-GMAW welding
process in coded units are [0.8565, 1.2988, 0.9068, 0.8701] or
in uncoded units, Ip=344.9 A, Ib=104.5 A, k=49.5%, and f=
5.9 m/min. The optimal settings were obtained using a GRG
nonlinear optimization routine available in Excel Solver®.

To compare the obtained results using WMI, we propose
a prioritized nonlinear constrained optimization and a
desirability approach. Using the fitted equations of the
welding outputs shown in Table 7 as constraints and
choosing the weld bead penetration (P) as an objective
function, we can write the optimization system as:

Maximize P ¼ b0 þrf ðxÞT þ 1

2
xT r2f ðxÞ� �

x ð15Þ

Subject to : 3 � H � 3:5 ð16Þ

8 � W � 10 ð17Þ

Table 5 Second-order model for WMI

Term Coef SE coef T p values

Constant 2.858 1.037 2.756 0.014

Ip 0.269 0.560 0.480 0.638

Ib 1.561 0.560 2.787 0.013

k 2.003 0.560 3.575 0.003

f 1.977 0.560 3.529 0.003

Ip
2 −0.600 0.513 −1.169 0.259

Ib
2 0.065 0.513 0.126 0.901

k2 −1.002 0.513 −1.952 0.069

f2 −2.155 0.513 −4.199 0.001

IpIb 1.071 0.686 1.561 0.138

Ipk −1.307 0.686 −1.906 0.075

Ipf 3.468 0.686 5.055 0.000

Ibk 1.480 0.686 2.158 0.046

Ibf −0.297 0.686 −0.434 0.670

kf 1.861 0.686 2.713 0.015

Table 6 Anova for WMI

Source df SS MS F0 p values

Regression 14 737.44 52.675 6.99 0.000

Linear 4 250.24 62.561 8.31 0.001

Square 4 157.17 39.293 5.22 0.007

Interaction 6 330.03 55.005 7.30 0.001

Residual error 16 120.49 7.531

Lack-of-fit 10 91.34 9.134 1.88 0.227

Pure error 6 29.15 4.859

Total 30 857.94
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20 � f � 26:5 ð18Þ

25 � A � 30 ð19Þ

I2p þ I2b þ k2 þ f 2 � 4:00 ð20Þ

where: x=[Ip, Ib, k, f], b0 is the regression constant term,
∇ f (x)T is the gradient of the objective function corresponding
to the first-order regression coefficients and ∇2 f(x)T is the
Hessian matrix, formed by the quadratic and interaction
terms of the estimated model of P. By using past data, we
established the upper and lower bounds cited in Eq. 19.We

thought this previously gathered data would provide, in
addition to a defect-free welded joint a feasible solution to
the objective function. If WMI is adequate, we expect similar
results. We chose as an objective function the weld bead
penetration (P), as it was the most important response to the
process. A similar approach can be applied by replacing the
second-order model of P in Eq. 15 with H, W, φ, or A.
However, it is not possible to affirm the achieved optimum
will be the same.

Table 8 compares the three methods’ results. Although
the desirability method presents values for each response
according to the proposed upper and lower bounds, the
achieved optimum does not satisfy the spherical constraint.
In this case, if the coded values to the parameters from the
desirability approach are adopted [1.98, 0.58, 0.44, 2.00],
the spherical constraint becomes xT x=8, 47>>ξ2. Then,
according to the imposed constraint, the desirability
solution is not a reasonable alternative for handling the
present problem. If the stationary point lies far from the
design center, the prediction error will be higher [41].
Figure 3, comparing the results of the methods, presents the
contour plots for WMI. Note that, as expected, the achieved
optimum using the desirability method falls far from those
points obtained with WMI and multiresponse optimization.

4 Sensitivity analysis of the welding parameters

In the optimization of the welding parameters, two possible
strategies assess the sensitivity of WMI: (a) arbitrarily
changing the constraint value (ξ2) or (b) adopting, with
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Model term Regression coefficients (full quadratic model)

P H W ϕ A PC1 WMI

Constant 2.36000 3.24286 8.30000 38.9286 28.3000 1.29657 2.84546

Ip 0.10417 0.04542 −0.04583 −0.4167 0.0750 0.16678 0.26714

Ib 0.06833 −0.01542 0.18750 −1.7417 0.6667 0.46636 1.55636

k 0.17417 0.06042 0.33750 −1.6167 1.2667 0.77920 1.99496

f 0.04000 0.08375 0.53750 −1.5000 2.1500 0.83376 1.96822

Ip
2 −0.09375 −0.03019 −0.05312 0.4658 −0.3792 −0.25958 −0.59745

Ib
2 −0.11250 −0.05644 0.05937 −1.3467 −1.4167 −0.19106 0.06648

k2 −0.17125 0.00481 −0.06563 −0.2717 −1.0542 −0.39484 −0.99799
f 2 −0.13375 −0.04519 −0.40313 1.4408 −1.8542 −0.82927 −2.14643
IpIb 0.04625 0.00938 0.14375 −1.4125 0.4125 0.34407 1.06718

Ipk −0.09875 0.10937 −0.03125 0.7250 −0.2000 −0.24347 −1.30495
Ipf 0.11750 −0.12562 0.43125 −3.3875 0.9500 0.87181 3.45943

Ibk −0.00375 −0.05313 0.25625 −1.9750 −0.0500 0.32941 1.47711

Ibf −0.03250 0.01188 −0.03125 0.5125 0.4750 −0.04455 −0.29698
kf 0.09500 −0.11313 0.09375 −2.0000 −0.0125 0.36806 1.85729

R2 (adj.) 83.2% 71.0% 72.2% 80.7% 75.5% 78.7% 73.7%

Table 7 Ordinary least squares
coefficients for original
responses, PC1 and WMI
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respect to each welding parameter, the partial derivatives of
WMI. The first strategy was used in [6], considering a
sensitivity analysis through a relaxing of the constraint
values. Otherwise, the change in constraint value may be
carried out by using the Lagrange multipliers concept. The
Lagrange multipliers express the gradient at the optimum as
a linear combination of the rows of the constraint matrix.
The concept it is able to indicate the sensitivity of the
optimal objective value to changes in the data [22]. A
Taylor series can be used to obtain the approximation,
assuming that the objective function is twice continuously
differentiable and considering small perturbations (δ) in the
right side of the constraints:

f xð Þ ¼ f x»ð Þ þ
Xm
i¼1

diΛ»i ð21Þ

where x* represents a local minimum, such as x» ¼
arg min

x
f ðxÞ.

In particular, Eq. 21 is valid if x is the minimizer of the
perturbed problem. If the right-hand side of the i-th
constraint changes by δi, then the optimal objective value
changes by approximately δiΛ*i. Hence Λ*i represents the
change in the optimal objective per unit changed in the
i-th right-hand side. The Lagrange multipliers are also
called in optimization software packages as “shadow
prices” [22].

To write a nonlinear constrained optimization problem in
an unconstrained form and considering the inequality
constraints, it is plausible to consider the Lagrangian
function as follows [36]:

L xi;Λj; sj
� � ¼ f xið Þ �

Xn
j¼1

Λj

Xp
i¼1

ajixi � bj

( )

�
Xm
j¼nþ1

Λj

Xp
i¼1

ajixi � bj � s2j

( )
ð22Þ
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Fig. 3 Contour plots for WMI showing the results for three methods. Legend: D (filled triangle) desirability, M (filled diamond) multiple, WMI
(filled circle) weighted multivariate index

P H W f A Ip Ib k f

WMI 2.326 3.105 9.778 25.617 28.790 344.975 104.483 49.535 5.935

Multiple 2.373 3.115 9.705 26.500 29.405 354.333 101.732 48.909 5.969

Desirability 2.260 2.700 9.600 24.300 28.700 384.500 93.700 47.200 6.500

Upper bound 2.600 3.500 10.000 26.500 25.000 385.000 115.000 55.000 6.500

Lower bound 2.100 3.000 8.000 20.000 30.000 245.000 55.000 35.000 4.500

Table 8 Comparative results
among methods
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where
Pp
i¼1

ajixi � bj are the constraints established in the

optimization problem, and sj are the slack variables used to
transform the inequalities in equality constraints.

To solve Eq. 22, it is necessary to use the Karush–Kuhn–
Tucker conditions [22], which can be done using the
gradient of the Lagrangian function. The Lagrange multi-
pliers can be determined using the optimization routine
available in Microsoft Excel Solver [33]. The Lagrange
multiplier obtained with the present data was Λ1=1.4345
(referring to the WMI spherical constraint). Substituting
this value in Eq. 22 it follows that:

WMI xð Þ ¼ WMI x»ð Þ þ
Xn
i¼1

diΛ»i ¼ 11:467þ 1:4345:d xT xð Þ

ð23Þ
The sensitivity analysis based on Eq. 23 can be obtained

by varying the delta value. The relationship between WMI
and δ, as can be seen, is a well-adjusted linear regression.
Therefore, any positive or negative perturbation will change
the objective function’s proportionality. In this sense,
adopting d xT xð Þ > 0, the spherical constraint is relaxed,
while for d xT xð Þ < 0, the space of solution is diminished,
probably forcing the optimization algorithm to find a more
adequate optimum. For d xT xð Þ ¼ 0, the constraint is,
obviously, not altered.

Figure 4 shows the behavior of WMI for a perturbation
range between [−2, +2]. Since the algorithm obeys a
maximization routine, WMI increases for positive incre-
ments on the right side of the spherical constraints.
Otherwise, a negative perturbation means the constraint is
much more rigorous than in the relaxation case. As the
problem is maximization, negative perturbations imply that
the maximum obtained in the iterations, lies in the
boundary imposed by the spherical constraint.

We can assess the sensitivity of a design objective
function, very practically, by adopting the partial deriva-
tives of an objective function with respect to each design
variable [37, 38]. This analysis yields information, with
respect to the design parameter, about the incremented or
decremented tendency of the design objective function. A
great number of researchers working with nonlinear
objective functions for welding processes have employed
this approach [37–40].

This study aims to predict how a small change in P-
GMAW process parameters affects the tendency of the
multivariate index WMI. As there is a strong correlation
among the WMI and welding outputs, the WMI function’s
tendency ought to directly correspond to the original output
set.

In this regard, considering the full quadratic model of
WMI, the sensitivities with respect to x=[Ip, Ib, k, f] are:

@f Ip; Ib; k; f
� �

@Ip
¼ 0:267� 1:195Ip þ 1:067Ib � 1:305k þ 3:459f

ð24Þ

@f Ip; Ib; k; f
� �

@Ib
¼ 1:556þ 1:067Ip þ 0:133Ib þ 1:477k � 0:297f

ð25Þ

@f Ip; Ib; k; f
� �

@k
¼ 1:995� 1:305Ip þ 1:477Ib � 1:996k þ 1:857f

ð26Þ

@f Ip; Ib; k; f
� �

@f
¼ 1:968þ 3:459Ip � 0:297Ib þ 1:857k � 4:292f

ð27Þ
The sensitivity analysis results are depicted in Fig. 5.

The results correspond to simulated conditions for the
process parameters. So that we could better understand the
variation obtained by changing parameters, we developed
simulated results of the four partial derivatives of WMI
using the Eqs. 24 up to 27 and a coded 24 full factorial
design. As shown in Fig. 5, from the Eq. 24, the peak
current (Ip) sensitivity of WMI is negative. This sensitivity
implies a decremental tendency, when Ip increases, in the
predictive values of WMI. Since WMI is positively
correlated with P, W, and A, large values of Ip also imply
a reduced bead penetration (P), width (W), and area (A).
Otherwise, the negative correlation observed among WMI,
H and φ implies that the increase of Ip prompts the increase
of H and φ. The wire feed rate (f) sensitivity of WMI
(Eq. 25) is analogous to (Ip) sensitivity. Accordingly, the
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background current (Ib; Eq. 26) and duty cycle (k)
sensitivities (Eq. 27) of WMI are positive. That is to say,
as (Ib) and (k) values increase, P, W, and A also increase; H
and φ values decrease.

To confirm the results and conclusions described above and
depicted in Fig. 5, we repeated the sensitivity analysis for one
of the original responses. Choosing penetration (P), for
example, the sensitivities with respect to x=[Ip, Ib, k, f] are:

@f Ip; Ib; k; f
� �

@Ip
¼ 0:104� 0:187Ip þ 0:046Ib � 0:098k þ 0:118f

ð28Þ

@f Ip; Ib; k; f
� �

@Ib
¼ 0:068þ 0:046Ip � 0:225Ib � 0:004k � 0:033f

ð29Þ

@f Ip; Ib; k; f
� �

@k
¼ 0:174� 0:099Ip � 0:004Ib � 0:343k þ 0:095f

ð30Þ

@f Ip; Ib; k; f
� �

@f
¼ 0:040þ 0:118Ip � 0:032Ib þ 0:095k � 0:268f

ð31Þ
As shown in Table 9, the correlation between WMI partial

derivatives and P partial derivatives are all positives (the
diagonal elements), meaning an increase in WMI corre-
sponds to an increase in P. Figures 5 and 6 allow us to verify
that, when the peak current (Ip) is 280 A, the WMI index and

P increase. When the background current (Ib) changes from
70 to 100 amperes, WMI and P increase significantly. WMI
is evidently more sensitive to changes in the peak current (Ip)
than to the penetration (P). The same can be observed with
the parameter duty cycle (k). In both cases, a duty cycle of
50% increases, simultaneously, WMI and P. For the wire
feed rate (f), the penetration is higher with 6 m/min than with
5 m/min. WMI is not, however, so sensitive to changes in the
levels of this parameter. This comparison is clearly depicted
in Fig. 6. All the graphical and statistical analyses in this
work were done using Minitab 15®.

The present study illustrates that, in the sensitivity
analysis, the correlation between the multivariate index
and the original responses remains the same. We can extend
this conclusion to the remaining welding responses and
parameters of the P-GMAW process.

5 Conclusion

This work used a multi-objective optimization technique
based on Principal Component Analysis to study a pulsed
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Table 9 Correlation between sensitivity analysis of the welding
parameters

@WMI
@Ip

@WMI
@Ib

@WMI
@k

@WMI
@f

@P
@Ip 0.789 −0.820 0.877 −0.940
@P
@Ib −0.605 0.054 −0.571 0.266
@P
@k 0.736 −0.937 0.792 −0.644
@P
@f −0.468 0.596 −0.853 0.968

Italicized values represent the significant correlations (p<5%)
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gas metal arc welding process with a set of multiple
correlated responses. From the experimental and theoretical
results, we draw the following conclusions:

1. For special cases where the first principal component is
not enough to represent most of the variation of the
welding data set, this work presents a novel alternative
index. Called the WMI, it is written in terms of the
weighted principal component scores.

2. The similarity to and advantages of the WMI criterion
with respect to the desirability index has been showed.
In this specific case, WMI was more appropriate for the
optimization than was desirability.

3. A framework considering the evaluation of the vari-
ance–covariance (or correlation) structure of the re-
sponse data set was developed. The framework
indicated the most adequate multivariate hypothesis
tests to be used in optimizing multiple correlated
responses.

4. The paper presented indices and tests capable of
determining the minimum number of principal compo-
nents that must be kept to form the multivariate index.

5. A case study was developed on a P-GMAW process
optimization problem where just two principal compo-
nents were responsible for 85.5% of the total variation
in a nonlinear model. Experimental results have been
shown to be compatible with the theory.

6. ANOVA verifies the adequacy of the full quadratic
model, presenting a p value for the lack-of-fit test
equals 0.227. Considering the full quadratic model of
WMI as a multivariate objective function, the optimal
settings for the P-GMAW process were obtained: Ip=
344.9 A, Ib=104.5 A, k=49.5%, and f=5.9 m/min.

These mathematical results are shown to be compatible
with the imposed bounds for all the responses, with a
more appropriate solution, in this particular case, than
that obtained using the desirability function. The
constraints were not violated, and the covariance
structure of the data was adequately considered.

7. Since the multivariate index written in terms of
weighted sum is a quadratic function, the GRG routine
was shown to be appropriate for the optimization
problem. Perhaps using other agglutination methods,
like a geometric mean, would make the genetic
algorithm more adequate.

8. A sensitivity analysis of these parameters based on the
concept of Lagrange multipliers demonstrated that
variation around the optimum is not significant. The
variation follows a straight line whose angular coeffi-
cient is the value of the shadow price.

9. WMI is postulated to be a representative index of the
original set of welding correlated responses. It was thus
demonstrated that the sensitivity analysis of the original
set corresponds to the WMI sensitivity analysis. The
correspondence followed the signal of the correlation
between the index and the response. A positive
correlation with penetration in particular indicated that
a positive increment in WMI also corresponded to a
positive increment in penetration. The magnitude of the
increment, however, was not the same.

The aforementioned conclusions cannot be extrapolated
to different materials, parameters, and designs, and they are
only valid in the adopted level range. Nonetheless, the
methodology can be recommended to fit any welding
processes.
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